
Week 13 – Monday

 What did we talk about last time?
 Parallelism vs. concurrency
 Task parallelism
 Data parallelism

 Parallel algorithmic strategies
 Embarrassingly parallel
 Divide and conquer
 Pipelines

 Parallel implementation strategies
 Fork/join
 Map/reduce
 Manager/worker

 Flynn's taxonomy divides hardware into how
they can deal with multiple instructions and
multiple pieces of data
 Single Instruction Single Data (SISD) is

sequential processing of one piece of data with
one instruction

 Single Instruction Multiple Data (SIMD) is
processing several pieces of data with the same
instruction, like the vector processing done in
graphics cards

 Multiple Instruction Single Data (MISD) isn't
used commonly, but it can allow for fault-
tolerance because different instructions are
executed in parallel on the same data

 Multiple Instruction Multiple Data (MIMD) is
processing different instructions on different data
at the same time

Images from Wikipedia

 Speedup is how much faster a parallel solution is compared to
a sequential one

 The formula is
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the sequential solution takes

 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the amount of time the parallel solution takes
 Thus, if a sequential solution to a problem takes 100 seconds,

and the parallel solution takes 50 seconds, the speedup is 2

 The study of parallel processing is, unfortunately, filled with
bad news

 A parallel program running on n processors can never run
more than n times faster than a well-written program for 1
processor

 Usually, running a parallel program on n processors is
nowhere close to running n times faster
 What is called linear speed-up

 What if you had 16 cores? Or 1,000 cores? Or a million?
 How much speedup can you get?
 Some part of the program has to be executed sequentially
 Reading input
 Starting threads
 Combining results

 Amdahl's law says that the maximum speedup possible is 1
1−𝑝𝑝 +𝑝𝑝𝑁𝑁

 𝑝𝑝 is the fraction of a program that can be parallel
 𝑁𝑁 is the number of processors

 What if we had unlimited cores?
 We can take the equation 1

1−𝑝𝑝 +𝑝𝑝𝑁𝑁
and plug in ∞ for 𝑁𝑁

 Doing so would mean, even with infinite cores, we could never
have better speedup than 1

1−𝑝𝑝
 Let's say that 90% of a program can be parallelized
 What's the maximum possible speedup you can get?
 𝑆𝑆 = 1

1−𝑝𝑝
= 1

1−.9
= 1

.1
= 10

 Unfortunately, Amdahl's Law makes the unrealistic assumption
that there's no extra overhead for creating more threads
 This assumption is called strong scaling

 Gustafson's Law tries to take a more realistic approach by letting
speedup be 𝑆𝑆 = 1 − 𝑝𝑝 + 𝑠𝑠𝑠𝑠
 𝑝𝑝 is the percentage of work that can benefit from some improvement in

execution (not just parallelism)
 𝑠𝑠 is the amount of improvement

 In Gustafson's Law, speedup means how much more data can be
processed in the same amount of time
 This approach is called weak scaling

 When working on a single computer, there's only one clock
 Thus, multiple threads can use this clock to record events in a

mutually consistent way
 Like adding timestamps to log files

 Distributed systems don't have a single, reliable clock
 Each computer might have a slightly (or completely) different time
 Clocks on each computer drift with respect to each other
 These problems get worse as distance (and network delays) increase

 We can synchronize clocks based on a centralized server
 A problem is that the time a message takes in the network is

unpredictable
 Network Time Protocol (NTP) is a protocol to do this:
 Client sends a message at T1
 Server receives the message at T2
 Server replies at T3
 Client receives the message at T4

 Offset = 𝑇𝑇2−𝑇𝑇1 +(𝑇𝑇3−𝑇𝑇4)
2

 The offset is a measurement of the difference in times between the
client and server

 Delay = 𝑇𝑇4 − 𝑇𝑇1 − (𝑇𝑇3 − 𝑇𝑇2)
 The delay is a measurement of how long it takes for the messages to

make a round trip
 Algorithms process a number of offset and delay values to try to

find the most accurate offset

 Large systems can't effectively use protocols like NTP
 There are too many nodes to synchronize
 The number of messages needed to synchronize becomes large

 Logical clocks are an alternative system using messages to
track the order of events

 We're only trying to know the sequence of events, not their
exact times

 Lamport timestamps are one way to implement logical clocks
 Named after Leslie Lamport, of LaTeX fame

 Each process keeps an internal counter of events that it sees
 When a local event occurs, the counter is incremented
 When a process sends or receives a message, it increments its

counter
 Messages have timestamps
 When a process receives a message, it updates its internal counter to

the message's timestamp if that timestamp is larger

 Consider a cloud system where
requests can be made for files

 Process A gets a request for the
files "foo" merged with "zoo"

 Timestamps are updated as
messages flow through the
system

 Timestamps are purely relative
and have no meaning to
processes not involved in the
exchanges

 Lamport timestamps only give indirect
information about the state of other
processes

 Vector clocks extend the idea of
Lamport timestamps by making every
process keep a counter for every
process

 When a message from one process
arrives, the receiving process can
update all of its counters based on
whatever is larger

 Vector clocks give much more
information about how many events
have been experienced by other
processes

 If you want to get a file from a web server, you can go to a URL
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving

performance by providing multiple sources for data

 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping file chunks to their

locations

 Each chunk has a primary
chunkserver as well as replicas

 The chunks are identical, but the
primary chunkserver is the only
place where the chunk can be
modified
 It propagates changes to the other

chunkservers
 This redundancy makes writing to

GFS slower, even though reading is
relatively fast

 The master server periodically
sends messages to the
chunkservers to get their current
status

 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the
network?

 Distributed hash tables (DHT) are an approach for mapping
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid
query flooding

 Chord was one of the first algorithms for a DHT,
introduced in 2001

 Each node has a unique identifier (often its IP
address) that's hashed to provide a location in a
circle
 If the hash is n bits long, the DHT can support up to

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking

successor elements in increasing powers of 2
away on the circle
 If the power of 2 node is missing, it tracks the next

non-missing node
 The example on the right is only for 25 = 32

nodes

 When a file is added, it's hashed
 Whichever node has that hash value (or is its

successor) is the location of that file
 On the right, node 6 is looking for a file at location

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the
practical result is that a file can be found with
O(log n) requests, where n is the size of the
network

 Replication is done by caching files at nodes that
were part of the lookup to find the file

 Finish reliable storage
 Consensus in distributed systems
 Blockchain

 Work on Assignment 7
 Due Thursday

 Read sections 9.6, 9.7, and 9.8

	COMP 3400
	Last time
	Questions?
	Assignment 7
	Flynn's taxonomy
	Limits of Parallelism
	Speedup
	Limits of parallelism
	Amdahl's Law and strong scaling
	Consequences of Amdahl's law
	Gustafson's Law and weak scaling
	Timing in Distributed Environments
	Timing in distributed environments
	Clock synchronization
	Logical clocks
	Lamport timestamps
	Example of Lamport timestamps
	Vector clocks
	Reliable Storage and Location
	Reliable data storage
	Google File System
	Illustration of GFS
	Distributed hash tables
	Chord DHT
	Files in Chord DHT
	Upcoming
	Next time…
	Reminders

