
Week 13 – Monday



 What did we talk about last time?
 Parallelism vs. concurrency
 Task parallelism
 Data parallelism

 Parallel algorithmic strategies
 Embarrassingly parallel
 Divide and conquer
 Pipelines

 Parallel implementation strategies
 Fork/join
 Map/reduce
 Manager/worker







 Flynn's taxonomy divides hardware into how 
they can deal with multiple instructions and 
multiple pieces of data
 Single Instruction Single Data (SISD) is 

sequential processing of one piece of data with 
one instruction

 Single Instruction Multiple Data (SIMD) is 
processing several pieces of data with the same 
instruction, like the vector processing done in 
graphics cards

 Multiple Instruction Single Data (MISD) isn't 
used commonly, but it can allow for fault-
tolerance because different instructions are 
executed in parallel on the same data

 Multiple Instruction Multiple Data (MIMD) is 
processing different instructions on different data 
at the same time
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 Speedup is how much faster a parallel solution is compared to 
a sequential one

 The formula is 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the sequential solution takes

 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the amount of time the parallel solution takes
 Thus, if a sequential solution to a problem takes 100 seconds, 

and the parallel solution takes 50 seconds, the speedup is 2



 The study of parallel processing is, unfortunately, filled with 
bad news

 A parallel program running on n processors can never run 
more than n times faster than a well-written program for 1 
processor

 Usually, running a parallel program on n processors is 
nowhere close to running n times faster
 What is called linear speed-up



 What if you had 16 cores?  Or 1,000 cores?  Or a million?
 How much speedup can you get?
 Some part of the program has to be executed sequentially
 Reading input
 Starting threads
 Combining results

 Amdahl's law says that the maximum speedup possible is 1
1−𝑝𝑝 +𝑝𝑝𝑁𝑁

 𝑝𝑝 is the fraction of a program that can be parallel
 𝑁𝑁 is the number of processors



 What if we had unlimited cores?
 We can take the equation 1

1−𝑝𝑝 +𝑝𝑝𝑁𝑁
and plug in ∞ for 𝑁𝑁

 Doing so would mean, even with infinite cores, we could never 
have better speedup than 1

1−𝑝𝑝
 Let's say that 90% of a program can be parallelized
 What's the maximum possible speedup you can get?
 𝑆𝑆 = 1

1−𝑝𝑝
= 1

1−.9
= 1

.1
= 10



 Unfortunately, Amdahl's Law makes the unrealistic assumption 
that there's no extra overhead for creating more threads
 This assumption is called strong scaling

 Gustafson's Law tries to take a more realistic approach by letting 
speedup be 𝑆𝑆 = 1 − 𝑝𝑝 + 𝑠𝑠𝑠𝑠
 𝑝𝑝 is the percentage of work that can benefit from some improvement in 

execution (not just parallelism)
 𝑠𝑠 is the amount of improvement

 In Gustafson's Law, speedup means how much more data can be 
processed in the same amount of time
 This approach is called weak scaling





 When working on a single computer, there's only one clock
 Thus, multiple threads can use this clock to record events in a 

mutually consistent way
 Like adding timestamps to log files

 Distributed systems don't have a single, reliable clock
 Each computer might have a slightly (or completely) different time
 Clocks on each computer drift with respect to each other
 These problems get worse as distance (and network delays) increase



 We can synchronize clocks based on a centralized server
 A problem is that the time a message takes in the network is 

unpredictable
 Network Time Protocol (NTP) is a protocol to do this:
 Client sends a message at T1
 Server receives the message at T2
 Server replies at T3
 Client receives the message at T4

 Offset = 𝑇𝑇2−𝑇𝑇1 +(𝑇𝑇3−𝑇𝑇4)
2

 The offset is a measurement of the difference in times between the 
client and server

 Delay = 𝑇𝑇4 − 𝑇𝑇1 − (𝑇𝑇3 − 𝑇𝑇2)
 The delay is a measurement of how long it takes for the messages to 

make a round trip
 Algorithms process a number of offset and delay values to try to 

find the most accurate offset



 Large systems can't effectively use protocols like NTP
 There are too many nodes to synchronize
 The number of messages needed to synchronize becomes large

 Logical clocks are an alternative system using messages to 
track the order of events

 We're only trying to know the sequence of events, not their 
exact times



 Lamport timestamps are one way to implement logical clocks
 Named after Leslie Lamport, of LaTeX fame

 Each process keeps an internal counter of events that it sees
 When a local event occurs, the counter is incremented
 When a process sends or receives a message, it increments its 

counter
 Messages have timestamps
 When a process receives a message, it updates its internal counter to 

the message's timestamp if that timestamp is larger



 Consider a cloud system where 
requests can be made for files

 Process A gets a request for the 
files "foo" merged with "zoo"

 Timestamps are updated as 
messages flow through the 
system

 Timestamps are purely relative 
and have no meaning to 
processes not involved in the 
exchanges



 Lamport timestamps only give indirect 
information about the state of other 
processes

 Vector clocks extend the idea of 
Lamport timestamps by making every 
process keep a counter for every 
process

 When a message from one process 
arrives, the receiving process can 
update all of its counters based on 
whatever is larger

 Vector clocks give much more 
information about how many events 
have been experienced by other 
processes





 If you want to get a file from a web server, you can go to a URL 
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get 
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping 

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving 

performance by providing multiple sources for data



 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the 

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping file chunks to their 

locations



 Each chunk has a primary 
chunkserver as well as replicas

 The chunks are identical, but the 
primary chunkserver is the only 
place where the chunk can be 
modified
 It propagates changes to the other 

chunkservers
 This redundancy makes writing to 

GFS slower, even though reading is 
relatively fast

 The master server periodically 
sends messages to the 
chunkservers to get their current 
status



 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the 
network?

 Distributed hash tables (DHT) are an approach for mapping 
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid 
query flooding



 Chord was one of the first algorithms for a DHT, 
introduced in 2001

 Each node has a unique identifier (often its IP 
address) that's hashed to provide a location in a 
circle
 If the hash is n bits long, the DHT can support up to 

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking 

successor elements in increasing powers of 2 
away on the circle
 If the power of 2 node is missing, it tracks the next 

non-missing node
 The example on the right is only for 25 = 32 

nodes



 When a file is added, it's hashed
 Whichever node has that hash value  (or is its 

successor) is the location of that file
 On the right, node 6 is looking for a file at location 

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a 

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but 

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the 
practical result is that a file can be found with 
O(log n) requests, where n is the size of the 
network

 Replication is done by caching files at nodes that 
were part of the lookup to find the file





 Finish reliable storage
 Consensus in distributed systems
 Blockchain



 Work on Assignment 7
 Due Thursday

 Read sections 9.6, 9.7, and 9.8
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